Solution of Nonlinear Fredholm-hammerstein Integral Equations by Using Semiorthogonal Spline Wavelets

نویسندگان

  • M. LAKESTANI
  • M. DEHGHAN
چکیده

Compactly supported linear semiorthogonal B-spline wavelets together with their dual wavelets are developed to approximate the solutions of nonlinear Fredholm-Hammerstein integral equations. Properties of these wavelets are first presented; these properties are then utilized to reduce the computation of integral equations to some algebraic equations. The method is computationally attractive, and applications are demonstrated through an illustrative example.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Approach for Solving Nonlinear Fredholm-Volterra-Hammerestein Integral Equations Based on Cubic B-Spline Wavelets

In this work, a computational method for solving nonlinear Volterra-Fredholm-Hammerestein integral equations is proposed. Compactly supported semiorthogonal cubic B-spline wavelets are employed as basis functions then collocation method is utilized to reduce the computation of integral equations to some algebraic system. The method is computationally attractive, and applications are demonstrate...

متن کامل

Application of Semiorthogonal B-Spline Wavelets for the Solutions of Linear Second Kind Fredholm Integral Equations

In this paper, the linear semiorthogonal compactly supported B-spline wavelets together with their dual wavelets have been applied to approximate the solutions of Fredholm integral equations of the second kind. Properties of these wavelets are first presented; these properties are then utilized to reduce the computation of integral equations to some algebraic equations. The method is computatio...

متن کامل

Numerical Solution of Interval Volterra-Fredholm-Hammerstein Integral Equations via Interval Legendre Wavelets ‎Method‎

In this paper, interval Legendre wavelet method is investigated to approximated the solution of the interval Volterra-Fredholm-Hammerstein integral equation. The shifted interval Legendre polynomials are introduced and based on interval Legendre wavelet method is defined. The existence and uniqueness theorem for the interval Volterra-Fredholm-Hammerstein integral equations is proved. Some examp...

متن کامل

Degenerate kernel approximation method for solving Hammerstein system of Fredholm integral equations of the second kind

Degenerate kernel approximation method is generalized to solve Hammerstein system of Fredholm integral equations of the second kind. This method approximates the system of integral equations by constructing degenerate kernel approximations and then the problem is reduced to the solution of a system of algebraic equations. Convergence analysis is investigated and on some test problems, the propo...

متن کامل

Numerical solvability of system of Fredholm-Hammerstein integral equations using Modification of Hat Function

A system of integral equations can describe different kind of problems in sciences and engineering. There are many different methods for numerical solution of linear and nonlinear system of integral equations. This paper proposed a numerical method based on modification of Hat functions for solving system of Fredholm-Hammerstein integral equations. The proposed method reduced a system of integr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005